2.8

What you should learn

GOAL(1) Represent absolute value functions.

GOAL(2) Use absolute value functions to model real-life situations, such as playing pool in Example 4.
Why you should learn it
∇ To solve real-life problems, such as when an orchestra should reach a desired sound level in
Exs. 44 and 45.

Absolute Value Functions

goal. 1 Representing Absolute Value Functions

In Lesson 1.7 you learned that the absolute value of x is defined by:

$$
|x|= \begin{cases}x, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -x, & \text { if } x<0\end{cases}
$$

The graph of this piecewise function consists of two rays, is V-shaped, and opens up. The corner point of the graph, called the vertex, occurs at the origin.

To the right of $x=0$, the graph is given by the line $y=x$.

Notice that the graph of $y=|x|$ is symmetric in the y-axis because for every point (x, y) on the graph, the point $(-x, y)$ is also on the graph.

ACTIVITY
Developing
Concepts

Graphs of Absolute Value Functions

(1) In the same coordinate plane, graph $y=a|x|$ for $a=-2,-\frac{1}{2}, \frac{1}{2}$, and 2 . What effect does a have on the graph of $y=a|x|$? What is the vertex of the graph of $y=a|x|$?
(2) In the same coordinate plane, graph $y=|x-h|$ for $h=-2,0$, and 2 . What effect does h have on the graph of $y=|x-h|$? What is the vertex of the graph of $y=|x-h|$?
(3) In the same coordinate plane, graph $y=|x|+k$ for $k=-2,0$, and 2 . What effect does k have on the graph of $y=|x|+k$? What is the vertex of the graph of $y=|x|+k$?

Although in the activity you investigated the effects of a, h, and k on the graph of $y=a|x-h|+k$ separately, these effects can be combined. For example, the graph of $y=2|x-4|+3$ is shown in red along with the graph of $y=|x|$ in blue. Notice that the vertex of the red graph is $(4,3)$ and that the red graph is narrower than the blue graph.

GRAPHING ABSOLUTE VALUE FUNGTIONS

The graph of $y=a|x-h|+k$ has the following characteristics.

- The graph has vertex (h, k) and is symmetric in the line $x=h$.
- The graph is V-shaped. It opens up if $a>0$ and down if $a<0$.
- The graph is wider than the graph of $y=|x|$ if $|a|<1$.

The graph is narrower than the graph of $y=|x|$ if $|a|>1$.

To graph an absolute value function you may find it helpful to plot the vertex and one other point. Use symmetry to plot a third point and then complete the graph.

EXAMPLE 1 Graphing an Absolute Value Function

Graph $y=-|x+2|+3$.

SOLUTION

To graph $y=-|x+2|+3$, plot the vertex at $(-2,3)$. Then plot another point on the graph, such as $(-3,2)$. Use symmetry to plot a third point, $(-1,2)$. Connect these three points with a V-shaped graph. Note that $a=-1<0$ and $|a|=1$, so the graph opens down and is the same width as
 the graph of $y=|x|$.

EXAMPLE 2 Writing an Absolute Value Function

Write an equation of the graph shown.

SOLUTION

The vertex of the graph is $(0,-3)$, so the equation has the form:

$$
y=a|x-0|+(-3) \quad \text { or } \quad y=a|x|-3
$$

To find the value of a, substitute the coordinates of the point $(2,1)$ into the equation and solve.

$$
\begin{array}{ll}
y=a|x|-3 & \\
\mathbf{1}=a|2|-3 & \\
\text { Write equation. } \\
1=2 a-3 & \\
4=2 a & \text { Substitute } 1 \text { for } y \text { and } 2 \text { for } x . \\
2=a & \\
\text { Add } 3 \text { to each side. } \\
2 & \text { Divide each side by } 2 .
\end{array}
$$

\Rightarrow An equation of the graph is $y=2|x|-3$.
$\sqrt{ }$ CHECK Notice the graph opens up and is narrower than the graph of $y=|x|$, so 2 is a reasonable value for a.

EXAMPLE 3 Interpreting an Absolute Value Function

The front of a camping tent can be modeled by the function

$$
y=-1.4|x-2.5|+3.5
$$

where x and y are measured in feet and the x-axis represents the ground.
a. Graph the function.
b. Interpret the domain and range of the function in the given context.

SOLUTION

a. The graph of the function is shown. The vertex is $(2.5,3.5)$ and the graph opens down. It is narrower than the graph of $y=|x|$.
b. The domain is $0 \leq x \leq 5$, so the tent is 5 feet wide.

The range is $0 \leq y \leq 3.5$, so the tent is 3.5 feet tall.

EXAMPLE 4 Interpreting an Absolute Value Graph

Billiards
While playing pool, you try to shoot the eight ball into the corner pocket as shown. Imagine that a coordinate plane is placed over the pool table. The eight ball is at $\left(5, \frac{5}{4}\right)$ and the pocket you are aiming for is at $(10,5)$. You are going to bank the ball off the side at $(6,0)$.
a. Write an equation for the path of the ball.

b. Do you make your shot?

SOLUTION

a. The vertex of the path of the ball is $(6,0)$, so the equation has the form $y=a|x-6|$. Substitute the coordinates of the point $\left(5, \frac{5}{4}\right)$ into the equation and solve for a.

$$
\begin{array}{ll}
\frac{5}{4}=a|5-6| & \text { Substitute } \frac{5}{4} \text { for } y \text { and } 5 \text { for } x . \\
\frac{5}{4}=a & \text { Solve for } a .
\end{array}
$$

An equation for the path of the ball is $y=\frac{5}{4}|x-6|$.
b. You will make your shot if the point $(10,5)$ lies on the path of the ball.

$$
\begin{array}{ll}
5 \stackrel{?}{=} \frac{5}{4}|10-6| & \text { Substitute } 5 \text { for } y \text { and } 10 \text { for } x . \\
5=5 & \text { Simplify. }
\end{array}
$$

\Rightarrow The point $(10,5)$ satisfies the equation, so you do make your shot.

Guided Practice

Vocabulary Check

Concept Check

1. What do the coordinates (h, k) represent on the graph of $y=a|x-h|+k$?
2. How do you know if the graph of $y=a|x-h|+k$ opens up or down? How do you know if it is wider, narrower, or the same width as the graph of $y=|x|$?
3. Error AnAlysis Explain why the graph shown is

Ex. 3 not the graph of $y=|x+3|+2$.

Graph the function. Then identify the vertex, tell whether the graph opens up or down, and tell whether the graph is wider, narrower, or the same width as the graph of $\boldsymbol{y}=|\boldsymbol{x}|$.
4. $y=\frac{1}{2}|x|$
5. $y=|x+5|$
6. $y=|x|-10$
7. $y=|x|+5$
8. $y=2|x+6|-10$
9. $y=-\left|x-\frac{1}{2}\right|-14$
10. Write an equation for the function whose graph is shown.
11. CAmping Suppose that the tent in Example 3 is 7 feet wide and 5 feet tall. Write a function that models the front of the tent. Let the x-axis represent the ground. Then graph the function and identify the domain and range of the function.

Ex. 10

Practice and Applications

Student help

Extra Practice
to help you master skills is on p. 942.

Example 1: Exs. 12-25
Example 2: Exs. 34-39
Example 3: Exs. 40-45
Example 4: Exs. 46-48

EXAmining the Effect of a Match the function with its graph.

12. $f(x)=3|x|$
13. $f(x)=-3|x|$
14. $f(x)=\frac{1}{3}|x|$
A.

B.

C.

EXAIMINING THE Effects of \boldsymbol{h} AND \boldsymbol{k} Match the function with its graph.

15. $y=|x-2|$
16. $y=|x|-2$
17. $y=|x+2|$
A.

B.

c.

Graphing Absolute Value Functions Graph the function. Then identify the vertex, tell whether the graph opens up or down, and tell whether the graph is wider, narrower, or the same width as the graph of $\boldsymbol{y}=|\boldsymbol{x}|$.
18. $y=6|x-7|$
19. $y=|x|+9$
20. $y=-|x-8|+1$
21. $y=-|x+2|+11$
22. $y=\frac{1}{3}|x-3|+4$
23. $y=-2|x+9|+3$
24. $y=|x|-\frac{5}{2}$
25. $y=-\frac{1}{2}|x+6|$

KEYSTROKE HELP Visit our Web site www.mcdougallittell.com to see keystrokes for several models of calculators.

FOCUS ON APPLICATIONS

(1) 221 - A haro dars nicht

 1) 111334 EVERYBODY LOVES SOMEBODY
 183877 WHERE DID OUR LOVEGO
91227 WISHIN
 (7) $88 \quad 8 \quad 13$ dANG ME
(8) 3 3 11 GET AROUND

MUSIC SINGLES
A musical group's single will change position in the charts from week to week. The Beatles were at No. 1 most often with a total of 22 hit singles.
$\xrightarrow[y]{\text { \&NDET }}$ APPLICATION LINK www.mcdougallittell.com

AbSOLUTE VALUE On many graphing calculators $|x|$ is denoted by $\operatorname{ABS}(x)$. Use a graphing calculator to graph the absolute value function. Then use the Trace feature to find the corresponding x-value(s) for the given y-value.
26. $y=|x|+4 ; y=10$
27. $y=|x+14| ; y=9$
28. $y=15|x| ; y=\frac{3}{2}$
29. $y=\left|x+\frac{4}{7}\right|-5 ; y=0$
30. $y=-|x-2|+5 ; y=0.5$
31. $y=-3.2|x|+7 ; y=-2$
32. $y=-3.75|x+1.5|-5 ; y=-5$
33. $y=1.5|x-3|+6 ; y=8.25$

WRITING EQUATIONS Write an equation of the graph shown.

34.

35.

36.

39.

MUSIC Singles In Exercises 40 and 41, use the following information.
A musical group's new single is released. Weekly sales s (in thousands) increase steadily for a while and then decrease as given by the function $s=-2|t-20|+40$ where t is the time (in weeks).
40. Graph the function.
41. What was the maximum number of singles sold in one week?

RAINSTORMS In Exercises 42 and 43, use the following information. A rainstorm begins as a drizzle, builds up to a heavy rain, and then drops back to a drizzle. The rate r (in inches per hour) at which it rains is given by the function $r=-0.5|t-1|+0.5$ where t is the time (in hours).
42. Graph the function.
43. For how long does it rain and when does it rain the hardest?

REWRITING EQUATIONS Solve the equation for \boldsymbol{y}. (Review 1.4)
56. $3 x-5 y=8$
57. $6 x+2 y=-9$
58. $-\frac{1}{5} x-\frac{3}{2} y=1$

GRAPHING EQUATIONS Graph the equation. (Review 2.3 for 3.1)
59. $y=x-5$
60. $y=6 x+7$
61. $y=-\frac{1}{2} x+10$
62. $x+y=8$
63. $4 x+y=2$
64. $3 x-y=-1$

Fitting a Line to Data Draw a scatter plot of the data. Then approximate the best-fitting line for the data. (Review 2.5)
65.

x	-2	-1.5	-1	-0.5	0.5	1	1	1.5	2	2
y	-5	-3	-1	-2	1	-1	2	4	3	3

66.

x	-2	-1	0	0.5	1	2	2.5	3.5	4	4.5
y	5	3	3.5	1.5	2	0	-2	-3.5	-2	-3.5

Graph the inequality in a coordinate plane. (Lesson 2.6)

1. $y \leq-8$
2. $2 x \geq-5$
3. $y>3 x-4$
4. $2 x+5 y<15$

Evaluate the function for the given value of \boldsymbol{x}. (Lesson 2.7)
5. $f(5)$ where $f(x)=\left\{\begin{array}{ll}3 x+9, & \text { if } x \leq 3 \\ 2 x-3, & \text { if } x>3\end{array}\right.$ 6. $f(0)$ where $f(x)= \begin{cases}10, & \text { if }-1 \leq x<0 \\ 5, & \text { if } 0 \leq x<1 \\ 0, & \text { if } 1 \leq x<2\end{cases}$

Graph the function. (Lesson 2.8)
7. $y=3|x-2|$
8. $y=-|x|+6$
9. $y=-5|x+3|-8$

Write an equation of the graph shown. (Lesson 2.8)
10.

11.

12.

13. BEACH SNACKS You and four friends have $\$ 15$ to spend on snacks at the beach. A medium box of popcorn costs $\$ 2.50$ and a medium soft drink costs $\$ 1.25$. Write and graph an inequality that represents the numbers of medium boxes of popcorn and medium soft drinks you can buy. (Lesson 2.6)
14. RENTING A CAR A local car rental company charges a weekly rate of \$200 with 1000 free miles. Each additional mile is $\$.20$. Write and graph a piecewise function that shows the car rental charge. If you drive 1200 miles in one week, how much will the rental car cost? (Lesson 2.7)

