

Objective:

- To determine the difference between a mutually exclusive and inclusive event.
- To find the probability of mutually exclusive and inclusive events.

Mutually Exclusive - when two events \qquad happen at the same time.
** You will NeVer have any outcomes in common.
Examples of mutually exclusive events:

- Turning left and turning right heads/tails)
- In cards: kings and aces

For - Formula for Mutually Exclusive

$$
\mathbf{P}(\mathbf{A} \text { or } \mathbf{B})=P(A)+P(B)
$$

Mutually Inclusive - when one event can happen at the same time. as another event
** You will have outcomes in Common.
Examples of mutually inclusive events:

- Turning your head left and scratching your head
- In cards: kings and hearts \rightarrow King of $9{ }^{\circ} \mathrm{S}$

Formula for Mutually Inclusive

$$
\begin{array}{r}
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\
P(\text { king or heart })=P(\text { king })+P(\text { heart })-P(\text { king ob } \\
\text { wait })
\end{array}
$$

**When completing these problems, first ask yourself if the problems are mutually EXCLLUSIVE or INCLUSIVE? This will help you determine how to set up and solve the problem.

A card is drawn randomly from nine cards labeled 1 through 9. What is the probability of picking a 5 or an even number.

We have two possible outcomes.
a. Getting a 5
b. Getting an even number

Mutually exclusive/inclusive? \qquad $1,2,3,4,5,6,7,8,9$
whole \#
 55
555
56%
$P($ number less than 4 or a 2$)=$
We have two possible outcomes.
a. Getting a number less than 4
b. Getting a 2

$$
\begin{aligned}
P(<4 \text { or } 2) & =\frac{3}{9}+\frac{1}{9}-\frac{1}{9} \\
& =\frac{1}{3} \text { or } 33 \%
\end{aligned}
$$

Mutually exclusive inclusive?
$12,3,4,5,6,7,8,9$

Examples: A card is drawn randomly from nine cards labeled 1 through 9.
$P($ odd number or a number less than 3$)=$ \qquad $M E$ or $m I$?
$P($ odd $)+P(<3)-P($ odd and $<3)$ $\frac{5}{9}+\frac{2}{9}-\frac{1}{9}=\frac{6}{9}=\frac{2}{3}$

$$
(1,2,3,4,5,6, \geq, 8,9
$$

Examples: A card is drawn randomly from nine cards labeled 1 through 9.
$P(1$ or a number greater than or equal to 7$)=$ \qquad
exclusive

$$
\begin{aligned}
& \frac{1}{9}+\frac{3}{9}=\frac{4}{9} \\
& 1,2,3,4,5,6,7,8,9
\end{aligned}
$$

$$
44 \%
$$

Examples: A card is drawn randomly from nine cards labeled 1 through 9.
$P(3$ or a number greater than 9$)=$ \qquad

$$
1,2,3,4,5,6,7,8,9
$$

Examples: A card is drawn randomly from nine cards labeled 1 through 9.
$P(2$ or an even number $)=$ \qquad

$$
\begin{aligned}
& 1,2,3,4,5,4,7,8,9 \\
& P(2)+P(\text { even })-P(2 \text { and even }) \\
& \frac{1}{9}+\frac{4}{9}-\frac{1}{9}=\frac{4}{9} \quad 44 \%
\end{aligned}
$$

