Notes 5/23/16 Monday

Test items to know for test tomorrow (5/24/16)

- Standard form $\mathrm{f}(\mathrm{x})=\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}$
- Vertex form $f(x)=a(x-h) 2+k$
- Vertex, axis of symmetry $x=\frac{-b}{2 a}$, direction of opening (a value (coefficient) if positive or negative) "positive goes up" and "negative goes down"
- Minimum / maximum value (if minimum parabola is facing up) (if maximum parabola is facing down) (the y value of vertex is max or min)
- Factoring
- Solve a quadratic (factoring and quadratic formula)

- $2 a$
- Discriminant of quadratic $b^{2}-4 a c$

Understanding the discriminant Discriminant $b^{2}-4 a c$	\# of real roots
$b^{2}-4 a c>0$	2 real roots
$b^{2}-4 a c=0$	1 real roots
$b^{2}-4 a c<0$	No real roots

-
- Word problems
- Systems of linear-quadratic equations
- 5 steps
- 1. Set equations equal to each other
- 2. Get everything to one side
- 3. Factor
- 4. Set the factors equal to zero to get the roots, solutions, x-intercepts
- 5. Substitute into the easier (linear) equation to get the y-value for the solution ordered pair
- The graphs will intersect twice to get 2 solutions
- The graphs will intersect once to get 1 solution
- The graphs will not intersect at all (no solutions)

Linear-quadratic systems worksheet

1) $y=x^{2}+3 x-5$
$y=x+3$
$x^{2}+3 x-5=x+3$ step 1 subtract x and 3 to the other side
$x^{2}+2 x-8=0$ step 2 factor
$(x+4)(x-2)$ step 3 set each equal to zero
$x+4=0 \quad x-2=0$
$x=-4 \quad x=2$
$y=x+3$; plug in -4 for x and get $-1(-4,-1)$
$y=x+3$; plug in 2 for x and get $5(2,5)$
2) $y=x^{2}-24$
$y=x-12$
$x-12=x^{2}-24$ subtract x and add 12 to the right side
$x^{2}-x-12$ factor
$(x-4)(x+3)$ set equal to zero
$X=4$ and $x=-3$
If x is 4 , when you substitute into $x-12$, then $y=-8(4,-8)$
If $x=-3$, then $x-12$ is $-15(-3,-15)$
