STATION \#1: GRAPHING QUADRATIC FUNCTIONS

SHOW ALL WORK FOR FULL CREDIT!!!!!!! NO PARTIAL CREDIT GIVEN.
Directions for all questions: Graph each of the following.
Then, identify the axis of symmetry, the vertex, the domain and range, and the intervals increasing/decreasing.

$$
\begin{array}{ll}
\text { 1. } f(x)=x^{2}-9 & \text { 2. } y=(5 x-2)^{2}
\end{array}
$$

3. Write the equation of the parabola in vertex form if the vertex is $(-2,7)$ and it contains the point $(3,-4)$.
4. Follow directions above: $y=-x^{2}-4 x+2$
5. Follow directions above: $y=-2 x^{2}-3$

STATION \#2: STANDARD FORM

SHOW ALL WORK FOR FULL CREDIT!!!!!!! NO PARTIAL CREDIT GIVEN.
Directions for all questions: Identify the vertex, axis of symmetry, min or max, and domain and range of the following functions.

$$
\text { 1. } y=x^{2}+12 x+36
$$

2. $y=-x^{2}-3 x+6$
3. Find the vertex and y-intercept: $f(x)=4 x^{2}-8 x+12$
4. What is the x value of the vertex in the equation?

$$
y=-5 x^{2}+\frac{4}{7}
$$

5. What is the axis of symmetry in the equation?

$$
y=6 x^{2}+4 x-7
$$

STATION \#3:
 MODELING WITH QUADRATIC FUNCTIONS

SHOW ALL WORK FOR FULL CREDIT!!!!!!! NO PARTIAL CREDIT GIVEN
Directions for all question: Find the equation in standard form of the parabola passing through the points.

Step 1: stat, step 2: edit, step 3: enter x's in L1 and y's in L2, step 4: stat, step 5: calc, step 6: option 5 quadreg, press enter and it gives you the A, B, C coefficients for the standard quadratic form; write down the standard form for each question with the appropriate A, B, C given

1. $(1,-2)(2,-2)(3,-4)$
2. $(2,9)(-4,5)(1,0)$
3. A parabola contains the points $(0,-4)(2,4)$ and $(4,4)$. Find the vertex of this parabola.
4. Put the parabola from \#3 into vertex form.
5. List out the domain and range of the parabola in \#3.

STATION \#4: SOLVING QUADRATIC EQUATIONS

SHOW ALL WORK FOR FULL CREDIT!!!!!!! NO PARTIAL CREDIT GIVEN

Directions: Solve the following quadratic equations by factoring.

1. $x^{2}+11 x+18=0$
2. $2 x^{2}=8 x$
3. $2 x^{2}+6 x=-4$

Directions: Use the quadratic formula to solve.
4. $5 x^{2}-11 x-6=0$
5. $x^{2}+4 x+6=0$

STATION \#5: COMPLETING THE SQUARE

Directions: Solve each quadratic equation by completing the square. Find solutions.

1. $x^{2}-12 x=-11$
2. $5 x^{2}=60-20 x$
3. $-x^{2}+6 x+10=0$
4. Put $y=x^{2}-10 x+4$ into vertex form, by completing the square.
5. What values of k would make this a perfect square trinomial? $x^{2}+k x+216$

STATION \#6: THE QUADRATIC FORMULA

Directions: Solve each equation using the Quadratic Formula.

1. $x^{2}-7 x+14=0$
2. $2 x^{2}+1=6 x$

Directions: Evaluate the discriminant for each equation and determine the number and types of roots \& place in vertex form.
3. $4 x+1=2 x^{2}$
4. $3 x^{2}+4 x=-1$

