Spiral Review \#5 KEY

1. Inverse variation $k=3.36$ and the final answer is $F=5.67$; so answer is choice B
2. The function is odd, choice C; http://www.purplemath.com/modules/fcnnot3.htm

- Determine algebraically whether $f(x)=-3 x^{2}+4$ is even, odd, or neither.

If I graph this, I will see that this is "symmetric about the y axis"; in other words, whatever the graph is doing on one side of the y-axis is mirrored on the other side:

This mirroring about the axis is a hallmark of even functions.

Note also that all the exponents are even (the exponent on the constant term being zero: $4 x^{0}=4 \times 1=4$).

But the question asks me to make the determinationalgebraically, which means that I need to do it with algebra, not with graphs.

- So l'll plug - x in for x, and simplify:
- $f(-x)=-3(-x)^{2}+4$

$$
\begin{aligned}
& =-3\left(x^{2}\right)+4 \\
& =-3 x^{2}+4
\end{aligned}
$$

- My final expression is the same thing I'd started with, which means that $f(x)$ is even.
- Determine algebraically whether $f(x)=2 x^{3}-4 x$ is even, odd, or neither.

If I graph this, I will see that it is "symmetric about the origin"; that is, if I start, at a point on the graph on one side of the y-axis, and draw a line from that point through th申 origin and extending the same length on the other side of the y-axis, I will get to another point on the graph.

This symmetry is a hallmark of odd functions.

3. A
4. Tan function = opposite over adjacent; answer is C
5. Answer is A
6. Answer is B
7. D
8. C
9. B
10. A. 14

