#### **Interactive** Classroom



LESSON 7-3

## **Square Root Functions and Inequalities**

Click the mouse button or press the space bar to continue.

Copyright © by The McGraw-Hill Companies, Inc.



- square root function
- radical function

LESSON

square root inequality



MENU

Chapter

Resources



LESSON

7/=32



MEN

EXAMPLE 1 Identify Domain and Range

LESSON

## Identify the domain and range of $f(x) = \sqrt{x-2}$ .

The domain only includes values for which the radicand is nonnegative.

 $x - 2 \ge 0$  Write an inequality.  $x \ge 2$  Add 2 to each side.

Thus, the domain is  $\{x \mid x \ge 2\}$ .

Find f(2) to determine the lower limit of the range.  $f(2) = \sqrt{2-2}$  or 0

So, the range is  $\{y \mid y \ge 0\}$ . **Answer:** D:  $\{x \mid x \ge 2\}$ ; R:  $\{y \mid y \ge 0\}$ 





| $f(x) = a\sqrt{x-h} + k$                                                                 |                                                                          |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| h–Horizontal Translation                                                                 | k–Vertical Translation                                                   |  |
| <i>h</i> units right if <i>h</i> is positive <i>h</i> units left if <i>h</i> is negative | <pre> k  units up if k is positive  k  units down if k is negative</pre> |  |
| The domain is $\{x \mid x \ge h\}$ .                                                     | The range is $\{y \mid y \ge k\}$ .                                      |  |
| <i>a</i> —Orient                                                                         | ation and Shape                                                          |  |
| • If $a < 0$ , the graph is                                                              | s reflected across the x-axis.                                           |  |
| • If $ a  > 1$ , the graph                                                               | is vertically expanded.                                                  |  |
| <ul> <li>If 0 &lt;  a  &lt; 1, the g</li> </ul>                                          | raph is vertically compressed.                                           |  |

LESSON

7-3





EXAMPLE 2 Graph Square Root Functions

LESSON

## A. Graph the function $y = 3\sqrt{x-4} + 2$ . State the domain and range.

The minimum point is at (h, k) = (4, 2). Make a table of values for  $x \ge 4$  and graph the function. The graph is the same shape as  $f(x) = \sqrt{x}$ , but because  $|a| \ge 1$ the graph is vertically compressed. It is also translated 4 units right and 2 units up.





Resources

**EXAMPLE 2** Graph Square Root Functions

Notice the end behavior; as *x* increases, *y* increases.

**Answer:** The domain is  $\{x \mid x \ge 4\}$  and the range is  $\{y \mid y \ge 2\}$ .





MENL



EXAMPLE 2

**Square Root Functions and Inequalities** 

Chapter

Resources

MENU



## **A.** Graph the function $y = 3\sqrt{x-2} - 3$ .

Check Your Progress



## **EXAMPLE 2** Graph Square Root Functions

LESSON

# **B.** Graph the function $y = -\sqrt{x+5} - 6$ . State the domain and range.

The minimum point is at (h, k) = (-5, -6). Make a table of values for  $x \ge -5$  and graph the function. The graph is the same shape as  $f(x) = \sqrt{x}$ , but because *a* is negative, the graph is reflected in the line f(x) = -6. It is also translated 5 units left and 6 units down.





#### **Square Root Functions and Inequalities**

Chapter

MEN

## **EXAMPLE 2** Graph Square Root Functions

Notice the end behavior; as *x* increases, *y* decreases.

**Answer:** The domain is  $\{x \mid x \ge -5\}$  and the range is  $\{y \mid y \le -6\}$ .



| X  | <b>y</b> |
|----|----------|
| -5 | -6       |
| -4 | -7       |
| -1 | -8       |
| 4  | _9       |
| 11 | -10      |





MENU

## **D.** D: $\{x \mid x \ge 1\}$ ; R: $\{y \mid y \le 4\}$

## Real-World Example 3

LESSON

Use Graphs to Analyze Square Root Functions

A. PHYSICS When an object is spinning in a circular path of radius 2 meters with velocity *v*, in meters per second, the centripetal acceleration *a*, in meters per second squared, is directed toward the center of the circle. The velocity *v* and acceleration *a* of the object are related by the function  $v = \sqrt{2a}$ .

Graph the function in the domain  $\{a | a \le 0\}$ .





Real-World Example 3

## Use Graphs to Analyze Square Root Functions

The function is  $v = \sqrt{2a}$ . Make a table of values for  $\{a \mid a \le 0\}$  and graph.

| a | V    |
|---|------|
| 0 | 0    |
| 1 | 1.41 |
| 2 | 2    |
| 3 | 2.45 |
| 4 | 2.83 |
| 5 | 3.16 |

LESSON

#### **Answer**:





MEN

## Real-World Example 3

LESSON

Use Graphs to Analyze Square Root Functions

**B.** What would be the centripetal acceleration of an object spinning along the circular path with a velocity of 4 meters per second?

It appears from the graph that the acceleration would be 8 meters per second squared. Check this estimate.

- $v = \sqrt{2a}$  Original equation
- $4 = \sqrt{2a}$  Replace *v* with 4.
- 16 = 2a Square each side.
  - 8 = a Divide each side by 2.

Answer: The centripetal acceleration would be 8 meters per second squared.



Ch Res

Chapter Resources MENU



Real-World Example 3 Check Your Progress



**B. GEOMETRY** The volume V and surface area A of a soap bubble are related by the function  $V = 0.094\sqrt{A^3}$ . What would the surface area be if the volume was 3 cubic units?



- **B.** 31.6 units<sup>2</sup>
- **C.** 100 units<sup>2</sup>
- **D.** 1000 units<sup>2</sup>



MEN

Chapter



should not be included, the graph should be dashed.

Chapter



 $y = \sqrt{3x+5}$ 

Chapter

x

MEN

## **EXAMPLE 4** Graph a Square Root Inequality

The domain is  $x \ge -\frac{5}{3}$ . Because *y* is *greater than*, the shaded region should be *above* the boundary and within the domain.

Select a point to see if it is in the shaded region. Test (0, 0).

$$0 > \sqrt{3(0) + 5}$$
$$0 > \sqrt{5}$$

Shade the region that does not include (0, 0).



**Square Root Functions and Inequalities** 



## Which is the graph of $y > \sqrt{2x+4}$ ?

EXAMPLE 4 Check Your Progress



#### **Square Root Functions and Inequalities**

## Click the mouse button to return to the Lesson Menu.

LESSON



Chapter Resource