

New Vocabulary

- square root function
- radical function
- square root inequality

EXAMPLE 1

Identify Domain and Range

Identify the domain and range of $f(x)=\sqrt{x-2}$.
The domain only includes values for which the radicand is nonnegative.

$$
\begin{aligned}
x-2 & \geq 0 \\
x & \geq 2
\end{aligned} \quad \text { Write an inequality. } 2 \text { to each side. }
$$

Thus, the domain is $\{x \mid x \geq 2\}$.
Find $f(2)$ to determine the lower limit of the range.
$f(2)=\sqrt{2-2}$ or 0
So, the range is $\{y \mid y \geq 0\}$.
Answer: D: $\{x \mid x \geq 2\} ; \mathrm{R}:\{y \mid y \geq 0\}$

EXADMPLE 1
 (V) Gheck Your Progress

Identify the domain and range of $f(x)=3 \sqrt{x+4}$.
A. D: $\{x \mid x \geq-4\} ; R:\{y \mid y \leq 0\}$
B. D: $\{x \mid x \geq 4\}$; R: $\{y \mid y \geq 0\}$
(C.) $\mathrm{D}:\{x \mid x \geq-4\}$; $\mathrm{R}:\{y \mid y \geq 0\}$
D. D: $\{x \mid$ all real numbers $\}$; $R:\{y \mid y \geq 0\}$

Key Concept

Transformations of Square Root Functions

$$
f(x)=a \sqrt{x-h}+k
$$

\boldsymbol{h}-Horizontal Translation

$|h|$ units right if h is positive $|h|$ units left if h is negative
The domain is $\{x \mid x \geq h\}$.

\boldsymbol{k}-Vertical Translation

$|k|$ units up if k is positive $|k|$ units down if k is negative
The range is $\{y \mid y \geq k\}$.

a-Orientation and Shape

- If $a<0$, the graph is reflected across the x-axis.
- If $|a|>1$, the graph is vertically expanded.
- If $0<|a|<1$, the graph is vertically compressed.

EXAMPLE 2

Graph Square Root Functions

A. Graph the function $y=3 \sqrt{x-4}+2$. State the domain and range.
The minimum point is at $(h, k)=(4,2)$. Make a table of values for $x \geq 4$ and graph the function. The graph is the same shape as $f(x)=\sqrt{x}$, but because $|a| \geq 1$ the graph is vertically compressed. It is also translated 4 units right and 2 units up.

EXADMPLE 2 Graph Square Root Functions

Notice the end behavior; as x increases, y increases.
Answer: The domain is $\{x \mid x \geq 4\}$ and the range is $\{y \mid y \geq 2\}$.

x	y
4	2
5	5
6	6.2
7	7.2
8	8

EXADPLE 2 Gheck Your Progress

A. Graph the function $y=3 \sqrt{x-2}-3$.

\mathbf{x}	\mathbf{y}

EXADMPLE 2 Graph Square Root Functions

B. Graph the function $y=-\sqrt{x+5}-6$. State the domain and range.
The minimum point is at $(h, k)=(-5,-6)$. Make a table of values for $x \geq-5$ and graph the function. The graph is the same shape as $f(x)=\sqrt{x}$, but because a is negative, the graph is reflected in the line $f(x)=-6$. It is also translated 5 units left and 6 units down.

EXADMPLE 2 Graph Square Root Functions

Notice the end behavior; as x increases, y decreases.
Answer: The domain is $\{x \mid x \geq-5\}$ and the range is $\{y \mid y \leq-6\}$.

		$4 y$						
-5	0			5	10		15	$20 x$
\cdots			$y=-\sqrt{x+5}-6$					
--10		\cdots						
								\rightarrow
		\downarrow						

x	y
-5	-6
-4	-7
-1	-8
4	-9
11	-10

EXAMPLE 2

(Gheck Your Progress
B. State the domain and range of the function $y=-\sqrt{x+1}-4$.
A. $\mathrm{D}:\{x \mid x \geq-1\}$; $\mathrm{R}:\{y \mid y \leq-4\}$
B. D: $\{x \mid x \geq 1\} ; R:\{y \mid y \geq-4\}$
C. D: $\{x \mid x \geq-1\} ; R:\{y \mid y \leq 4\}$
D. $\mathrm{D}:\{x \mid x \geq 1\} ; \mathrm{R}:\{y \mid y \leq 4\}$

Real-World Example 3 Use Graphs to Analyze Square Root Functions
A. PHYSICS When an object is spinning in a circular path of radius 2 meters with velocity v, in meters per second, the centripetal acceleration a, in meters per second squared, is directed toward the center of the circle. The velocity v and acceleration a of the object are related by the function $v=\sqrt{2 a}$.

Graph the function in the domain $\{a \mid a \leq 0\}$.

Q Real-World Example 3 Use Graphs to Analyze Square Root Functions

The function is $v=\sqrt{2 a}$. Make a table of values for $\{a \mid a \leq 0\}$ and graph.

Answer:

\boldsymbol{a}	\boldsymbol{v}
0	0
1	1.41
2	2
3	2.45
4	2.83
5	3.16

Real-World Example 3 Use Graphs to Analyze Square Root Functions
B. What would be the centripetal acceleration of an object spinning along the circular path with a velocity of 4 meters per second?
It appears from the graph that the acceleration would be 8 meters per second squared. Check this estimate.

$$
\begin{aligned}
v & =\sqrt{2 a} & & \text { Original equation } \\
4 & =\sqrt{2 a} & & \text { Replace } v \text { with } 4 . \\
16 & =2 a & & \text { Square each side. } \\
8 & =a & & \text { Divide each side by } 2 .
\end{aligned}
$$

Answer: The centripetal acceleration would be 8 meters per second squared.

Real-World Example $3 \sqrt{\square}$ Gheck Your Progress

A. GEOMETRY The volume V and surface area A of a soap bubble are related by the function $V=0.094 \sqrt{A^{3}}$. Which is the graph of this function?
A.

B.

C.

D.

0%	0%	0%	0%
	0	\odot	\circ
	\circ	\circ	\circ

Q Real-World Example $3 \sqrt{\square}$ Gheck Your Progress

B. GEOMETRY The volume V and surface area A of a soap bubble are related by the function $V=0.094 \sqrt{A^{3}}$. What would the surface area be if the volume was
3 cubic units?
A. 10.1 units 2
B. 31.6 units 2
C. $\mathbf{1 0 0}$ units 2
D. 1000 units 2

EXADMPLE 4 Graph a Square Root Inequality

Graph $y>\sqrt{3 x+5}$.

Graph the boundary $y=\sqrt{3 x+5}$. Since the boundary should not be included, the graph should be dashed.

EXAMPLE 4 Graph a Square Root Inequality

The domain is $x \geq-\frac{5}{3}$. Because y is greater than, the shaded region should be above the boundary and within the domain.

Select a point to see if it is in the shaded region.
Test (0, 0).
$0>\sqrt{3(0)+5}$
$0>\sqrt{5}$
Shade the region that does not include $(0,0)$.

EXADPLE $4 \sqrt{ }$ Ghedk Your Progress

Which is the graph of $y>\sqrt{2 x+4}$?
A.

B.

C.

D.

